In Article, IJF

INT J FORECASTING, Volume 28, Issue 2, APR-JUN 2012, Pages 485-496

Organizations with large-scale inventory systems typically have a large proportion of items for which demand is intermittent and low volume. We examine various different approaches to demand forecasting for such products, paying particular attention to the need for inventory planning over a multi-period lead-time when the underlying process may be non-stationary. This emphasis leads to the consideration of prediction distributions for processes with time-dependent parameters. A wide range of possible distributions could be considered, but we focus upon the Poisson (as a widely used benchmark), the negative binomial (as a popular extension of the Poisson), and a hurdle shifted Poisson (which retains Croston’s notion of a Bernoulli process for the. occurrence of active demand periods). We also develop performance measures which are related to the entire prediction distribution, rather than focusing exclusively upon point predictions. The three models are compared using data on the monthly demand for 1046 automobile parts, provided by a US automobile manufacturer. We conclude that inventory planning should be based upon dynamic models using distributions that are more flexible than the traditional Poisson scheme. (C) 2011 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.